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Abstract	

This	 paper	 discusses	 how	data	 analytics	 on	muscle	 use	 in	 extreme	
racing	conditions	can	be	conducted	to	find	actionable	insights	for	the	
driver.	 One	 of	 the	 important	 insights	 is	 how	 to	 minimize	 driver’s	
muscle	 fatigue	 during	 a	 race,	 because	 IndyCar	 has	 regulations	
forbidding	 the	 use	 of	 power	 steering.	 This	 paper	 tackles	 two	
technological	challenges:	1.	data	validation	on	noisy	signal	obtained	
from	wearable	device	in	extreme	condition,	2.	data	cultivation	to	find	
actionable	 insights	 for	 the	 driver	 from	 heterogeneous	 racing	 data.	
First,	we	propose	a	data	quality	assessment	technique,	enabling	the	
judgment	of	whether	data	is	reliable	or	not.	This	qualitative	analysis	
revealed	 that	 the	 data	 validation	method	works	 99.5%	accuracy	 to	
classify	data	as	reliable	or	not.	Second,	we	propose	a	data	visualization	
tool	 based	 on	 unsupervised	 learning	 that	 enables	 the	 driver	 or	
mechanics	 to	 discover	 useful	 feedback.	 We	 identified	 and	
demonstrated	 several	 actionable	 insights,	 e.g.,	 identifying	 potential	
relaxation	points.	

1. Introduction	
IndyCar	 is	an	American-based	auto	racing	sanctioning	body	 for	Championship	auto	racing.	Unlike	
other	racing	formats,	such	as	the	Formula	One,	IndyCar	has	regulations	forbidding	the	use	of	power	
steering.	This	requires	drivers	to	exert	more	force	on	their	forearms,	which	dramatically	deteriorates	
their	performance	as	their	muscles	fatigue	during	a	race.	Hence,	saving	a	driver’s	muscle	use	during	
a	race	is	a	beneficial	insight	for	the	driver.	This	paper	tackles	this	challenge:	how	data	analytics	can	
improve	driving	performance,	that	is,	minimize	the	use	of	forearm	muscles	during	a	race.	

In	 the	 research	 of	 auto-racing,	 various	 approaches	 are	 conventionally	 taken	 to	 improve	 driver’s	
performance	 or	 safety.	 One	 approach	 is	 the	 trajectory	 path	 optimization	 based	 on	 the	 driver’s	
record.[1]	The	findings	from	trajectory	analysis	are	used	for	the	path	planning	of	self-driving	cars.[2]	
Another	approach	is	a	real-time	decision	system	for	tire	changes	within	a	race.[3]	Moreover,	there	is	
a	research	for	driver’s	safety.	One	approach	is	around	heat	prevention	using	a	temperature	sensor	
on	 the	 driver.[4]	 However,	 in	 our	 survey	 on	 publicly	 available	 papers,	 no	 research	 focused	 on	
analyzing	forearm	use	during	race	with	the	consideration	of	heterogeneous	data.	

To	 improve	 the	driver’s	performance	with	 the	 focus	on	muscle	use,	 this	paper	 tackles	 two	major	
technological	challenges:	

A. data	validation	on	noisy	signal	obtained	from	wearable	sensors	in	extreme	condition,	
B. data	cultivation	to	find	actionable	insights	for	the	driver	from	heterogeneous	racing	data.	
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For	challenge	A,	one	of	the	common	challenges	for	wearable	devices	is	data	quality	and	validation.	
The	 quality	 of	 the	 signal	 coming	 from	 wearable	 device	 is	 very	 sensitive	 to	 whether	 or	 not	 it	 is	
properly	attached	to	the	body.	Thus,	for	challenge	A,	we	propose	a	data	quality	validation	technique	
that	enables	the	judgment	of	whether	the	data	is	reliable	or	not.	This	methodology	is	based	on	the	
comparison	 between	 actual	 Electromyogram	 (EMG)	 and	 predicted	 EMG,	which	 is	 computed	 by	 a	
Machine	Learning	 technique.	 If	 the	actual	EMG	deviates	significantly	 from	the	predicted	EMG,	 the	
actual	EMG	is	considered	not	to	be	valid.	To	guarantee	the	performance	of	the	prediction,	the	feature	
in	the	prediction	model	uses	only	the	car’s	telemetry	information,	i.e,	excluding	the	EMG	information	
itself	as	a	feature.	This	is	because	the	EMG	signal	itself	may	be	too	noisy	to	use	for	prediction,	while	
the	car’s	telemetry	information	can	provide	stable	signals.	Our	calculations	show	that	this	qualitative	
analysis	based	data	validation	method	works	with	99.5%	accuracy	to	classify	the	data	reliability.		

For	challenge	B,	a	data	visualization	and	interaction	tool	was	designed	that	enables	the	race	team	to	
cultivate	heterogeneous	data	and	discover	useful	insights	in	an	intuitive	manner.	The	computation	
method	behind	this	 tool	 is	a	multi-modal	analysis	of	EMG	and	car	 telemetry	data.	This	analysis	 is	
unsupervised	learning	using	the	following	technique;	1.	cluster	data	points	in	a	geographical	fashion,	
2.	 find	similarity	between	EMG	and	 the	car’s	 telemetry	data.	Based	on	 this	analysis,	 locations	are	
identified	where	 the	 driver	 exerts	 unnecessary	 force	 during	 the	 race,	 in	 other	words,	where	 the	
driver	may	be	able	to	rest	and	recover.	

The	work	in	this	paper	is	based	on	data	collected	over	several	races	during	the	2016	Verizon	IndyCar	
Series	from	Tony	Kanaan,	a	driver	from	the	Chip	Ganassi	racing	team.	To	measure	the	driver’s	muscle	
use,	we	used	a	special	wearable	fabric	called	hitoe1	[5],	to	collect	the	driver’s	EMG	data	from	their	
forearms	during	the	race.	To	meet	the	IndyCar	requirement	for	flame	retardant	fabric,	these	hitoe	
sensor	patches	were	sewn	inside	the	driver’s	standard	Nomex	undershirt.	Along	with	the	EMG	data,	
the	car’s	telemetry	information	was	also	collected,	including	three-axis	accelerometer	data,	steering,	
brake	pressure,	gps	location	data,	complete	with	time	stamp	and	lap	numbers.	This	heterogeneous	
dataset	is	comprehensively	utilized.	We	believe	this	work	is	the	world’s	first	publication	to	collect	
and	analyze	forearm	use	during	real-world	racing	conditions.		

This	paper	is	composed	as	follows.	In	section	2,	we	describe	how	we	collected	data	from	both	the	
car’s	telemetry	and	the	driver’s	vital	information.	In	section	3,	the	data	quality	validation	challenge	
is	 discussed	 including	 the	methodology	 and	 the	 evaluation.	 In	 section	4,	 the	 data	 cultivation	 and	
visualization	challenge	to	 identify	actionable	 insights	 is	discussed	with	both	the	methodology	and	
evaluation.	Finally,	in	section	5,	we	conclude	this	paper.	

2. Data	Collection	
In	this	section,	the	collection	and	structure	of	the	data	used	in	this	analysis	is	described.	

2.1. Data	Collection	
A	variety	of	data	points	are	collected	while	the	driver	is	on	the	race	track.	The	hitoe	fabric	is	sewn	
inside	the	driver’s	long	sleeve	Nomex	undershirt	and	has	two	sets	of	sensors	collecting	bioelectrical	
signals.	One	set	is	used	to	collect	Electrocardiogram	(ECG)	with	sensors	located	around	the	rib	cage	
and	the	second	to	collect	signal	for	EMG	with	sensors	located	around	the	forearm.	The	ECG	data	was	

																																																								
1	hitoe	is	a	wearable	fabric	developed	by	NTT	Group.	The	ordinal	product	of	hitoe	can	measure	ECG	
through	API.	In	addition	to	it,	we	added	EMG	measurement	functionality	for	this	work.	
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not	 used	 for	 the	 analysis	 described	 in	 this	 paper.	 The	 sensors	 communicate	 through	 a	 bluetooth	
receiver	connected	to	the	onboard	telemetry	system.	The	receiver	captures	data	at	200	samples	per	
second.	Each	race	offers	different	number	of	laps	ranging	between	50	to	300	laps	with	an	average	
distance	of	2.2	miles	per	lap.	

In	 addition	 to	 the	 driver’s	 wearable	 sensor	 information,	 we	 collect	 from	 the	 onboard	 telemetry	
system	 accelerometer	 data	 (latitude,	 longitude,	 vertical),	 steering	 angle,	 speed	 (mph),	 throttle	
pressure,	brake	pressure,	engine	rpm,	angular	acceleration,	GPS	coordinates	(relative	to	a	fixed	point	
on	the	track),	and	seconds	of	gap	between	the	car	ahead	and	behind	the	driver.	This	information	is	
collected	through	the	onboard	sensors	provided	by	the	Chip	Ganassi	Racing	team.	Each	data	point	is	
collected	at	a	different	sampling	rate	depending	on	its	need	for	the	race	strategy.	

Data	is	collected	through	a	private	network	that	is	accessible	during	the	race	allowing	the	team	to	do	
near-real	 time	 analysis.	However,	 due	 to	 limited	bandwidth,	 the	 transmission	 is	 limited	 to	 lower	
sampling	rates,	which	didn’t	provide	the	required	granularity	for	the	analysis.	This	paper	focuses	on	
post-race	analysis	which	allows	higher	 frequency	data	 to	be	used,	which	 is	downloaded	 from	the	
onboard	telemetry	system	after	the	race.	

Along	with	all	data	points,	we	collect	timestamps	from	the	onboard	real	time	clock	(RTC).	The	RTC	is	
used	to	anchor	data	collected	across	differing	frequencies.	Using	this	RTC	channel	value,	data	from	
all	 channels	 is	 realigned	 to	 the	 highest	 frequency	 channel,	while	 listing	 a	 blank	 value	where	 the	
source	channel	collected	data	at	a	lower	frequency.	This	is	the	base	data	preparation	is	conducted	
before	subsequent	analysis	as	documented	in	Section	3.	

2.2. Dataset	for	wearable	sensor’s	quality	analysis	
One	of	the	challenges	that	this	paper	tackles	is	the	validation	of	sensor	data,	or,	in	other	words	how	
can	we	judge	the	cleanliness	of	the	data?	This	argument	involves	two	different	questions.		

The	 first	 question	 is	 whether	 the	 wearable	 sensor,	 hitoe,	 has	 capability	 to	 capture	 EMG	 during	
extreme	racing	condition.	This	may	require	further	analysis	by	physiological	experts	to	guarantee	
that	our	wearable	sensor	has	the	capability	to	capture	the	signal.	This	is	out	of	scope	of	this	paper’s	
focus	 since	we	 assume	 the	 sensor	 has	 the	 capability	 to	 collect	 EMG	 data	 based	 on	 the	 following	
observations.	A	sample	of	EMG	data	is	shown	on	the	track	with	time	stamp	in	Figure	1.	The	left	bottom	
corner	is	expanded	in	Figure	2	where	the	radius	of	the	circle	represents	the	amplitude	of	EMG	signal.	
As	Figure	2	shows,	it	makes	sense	that	high	EMG	readings	occur	just	before	the	corner	after	a	long	
straight	section	of	track.	Therefore,	in	this	paper,	the	wearable	sensor,	hitoe,	is	assumed	to	function	
properly	even	in	extreme	racing	condition.	
	
The	other	question	is	whether	the	wearable	sensor	attaches	to	the	driver’s	body	reliably.	Even	if	the	
sensor	has	the	capability	of	measuring	EMG,	it	cannot	provide	a	clean	signal	if	it	is	not	attached	to	
body	properly.	This	is	the	data	validation	problem	that	this	paper	focuses	on.	Namely,	our	system	
addresses	the	attachment	question	by	classifying	the	sensor	data	as	clean	or	dirty.	
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Figure	1.	EMG	behavior	on	entire	track	
	

Figure	2.	EMG	behavior	on	corner	after	long	straight	

To	evaluate	the	classification	performance	of	our	system,	the	labeled	data	or	ground	truth,	needs	to	
be	determined.	To	do	so,	we	collected	data	in	two	different	ways	with	the	hitoe	wearable	fabric.	One	
piece	of	fabric	is	worn	with	tight	compression	for	clean	data.	While	tight	compression	collects	clean	
data,	the	downside	of	it	is	discomfort	to	the	driver.	Therefore,	it	not	realistic	to	use	tight	compression	
in	 real	 competition.	The	other	 fabric	 is	worn	with	 loose	compression	 for	 less	 reliable	data.	While	
loose	compression	is	more	comfortable	for	the	driver,	it	produces	noisy	data	during	extreme	racing	
condition.	We	 collected	 these	 two	 different	 types	 of	 data	 over	 same	 course.	 The	 details	 of	 these	
datasets	are	described	in	section	3.2.1.	The	challenge	for	reliable	data	collection	is	finding	the	balance	
between	compression	that	is	tight	enough	to	provide	clean	data,	but	loose	enough	to	be	comfortable	
during	a	long	race.	This	balance	point	will	be	dependent	on	the	driver.	

3. EMG	Data	Quality	Analytics	
One	of	the	common	challenges	for	wearable	devices	is	data	quality	and	validation.		The	quality	of	the	
signal	coming	from	wearable	devices	are	very	sensitive	to	whether	it	is	properly	attached	to	the	body	
or	 not.	 Especially	 in	 the	 case	 of	 IndyCar,	 the	 EMG	 data	 is	 highly	 affected	 by	 the	 extreme	 forces	
experienced	in	racing	conditions.		If	the	data	is	not	valid	and	reliable,	it	may	lead	to	faulty	analysis	
and	 incorrect	 insights.	 Thus,	 it	 is	 important	 to	 validate	 the	 data	 quality	 before	 proceeding	 to	
advanced	analysis.	

3.1. Methodology	–	Machine	Learning	on	Heterogeneous	Data	
The	methodology	for	data	validation	is	based	on	the	comparison	of	actual	EMG	data	and	predicted	
EMG. If	the	driver’s	actual	EMG	significantly	deviates	from	the	predicted	EMG,	the	collected	EMG	is	
not	considered	valid.	The	key	to	this	methodology	is	how	to	predict	the	EMG	value	with	high	accuracy	
in	a	reliable	manner	via	Machine	Learning.	Our	hypothesis	is	that	we	can	achieve	this	by	using	only	
heterogeneous	and	reliable	car	telemetry	data	as	features	for	the	prediction	model,	i.e,	excluding	the	
collected	 EMG	 information	 as	 a	 feature.	 Our	 evaluation	 reveals	 that	 this	 prediction	 using	
heterogeneous	data	has	acceptable	accuracy.	We	conduct	this	data	validation	process	for	each	lap	of	
the	race	course	since	further	analysis	depends	on	lap	data.	
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Figure	3.		Data	Validation	Process	by	Ensemble	Learning	on	heterogeneous	time-series	data	

	

3.1.1. Step	1:	Training	Model	
In	the	first	process,	our	EMG	prediction	model	is	trained	via	machine	learning.	Ensemble	learning	
aggregates	different	prediction	algorithms	such	as	Random	Forest,	XGBoost,.	This	way,	our	model	
can	leverage	diverse	prediction	models	to	produce	more	accurate	results.		

The	features	are	simply	designed	by	car	telemetry	data.	The	EMG	data	is	not	used	as	a	feature	since	
it	 is	highly	affected	by	how	the	wearable	device	 is	attached	to	body.	 In	 the	extreme	conditions	of	
IndyCar,	temporary	detachment	from	the	driver’s	body	can	easily	happen.	Thus,	to	create	the	EMG	
prediction	model,	we	only	leverage	reliable	and	heterogeneous	data.	

This	training	process	requires	the	clean	labeled	EMG	data	which	is	described	in	section	2.2.	We	use	
only	datasets	obtained	from	firmly	attached	wearable	fabric	for	this	training	phase.	

3.1.2. Step	2:	Comparison	of	predicted	value	to	actual	value	
In	the	second	process,	the	quality	of	the	EMG	data	is	measured	and	judged	whether	it	is	usable	for	
further	analysis.	The	data	quality	assessment	is	based	on	the	error	between	actual	EMG	values	and	
predicted	EMG	values.	We	are	 interested	 in	validating	data	quality	 lap	by	 lap	 for	 the	next	 level	of	
analysis,	which	is	articulated	in	section	4.		

First,	predicted	EMG	is	computed	by	using	the	model	trained	in	step	1.		Again,	the	features	for	this	
model	 are	 only	 composed	of	 car	 telemetry	 information	which	provide	 stable	 signals.	 Thus,	 these	
predicted	EMG	values	are	assumed	to	be	able	to	be	acceptably	accurate.		

Second,	the	error	between	predicted	value	and	actual	value	is	computed	as	
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𝑒" = 	
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where	𝑙	represents	the	lap	index,	𝑒" 	represents	the	average	error	(RMSE	:	Root	Mean	Squared	Error)	
in	lap	𝑙,	𝑁" 	represents	the	number	of	data	point	of	EMG	in	lap	𝑙,	𝑦&

' 	represents	the	predicted	EMG	at	
data	index	=	𝑘,	and	𝑦&

) 	represents	the	actual	EMG	at	index	𝑘.	

Lastly,	the	quality	validation	will	judge	if	the	data	at	lap	𝑙	can	be	used	for	advanced	analytics	or	not.	
This	classification	is	based	on	threshold	against	𝑒" .	This	threshold	is	experimentally	setup.		

3.2. Evaluation	–	EMG	Prediction	and	quality	assessment	performance	
This	 section	 shows	 the	 two	 evaluations:	 1.	 The	 model	 evaluation	 for	 EMG	 prediction	 using	 car	
telemetry	data,	and	2.	The	quality	validation	by	classifying	data	as	dirty	or	clean.	

3.2.1. Evaluation	1	:	EMG	Prediction	Quality	
The	objective	of	this	evaluation	is	to	investigate	the	performance	of	the	EMG	prediction.	The	dataset	
for	this	is	the	clean	dataset	described	in	section	2.2.	This	dataset	has	40	laps	in	10	different	practice	
runs	which	are	composed	of	1,655,102	data	points. The	evaluation	uses	the	5-fold	cross	validation	
method	 as	 shown	 in	 Figure	 4.	 Each	 segment	 is	 divided	 by	 laps.	 Also,	 the	 prediction	 model	 is	
constructed	using	10	different	sizes	of	dataset	from	10%	to	100%	for	analytics	experiment.	

The	results	of	the	EMG	prediction	are	shown	in	Figure	5.	The	best	prediction	error	against	the	test	
dataset	is	about	0.220,	while	the	error	against	the	training	data	is	0.088	with	100%	of	the	data.	Note	
that	the	EMG	data	is	scaled	by	standardization	from	the	original	data,	meaning	the	mean	equals	0	and	
the	standard	deviation	equals	1.0.	Therefore,	this	model	results	in	approximately	22%	error	in	the	
predicted	EMG	signal.	This	prediction	outperforms	a	random	prediction	model.		

This	prediction	performance	can	be	improved	by	further	refinement	of	the	machine	learning	model.	
Also,	 as	Figure	5	 shows,	 the	error	gets	 smaller	when	 the	 size	of	dataset	 increases.	Therefore,	 the	
model	can	be	improved	by	using	a	larger	dataset.	

Figure	4.	Datasets	used	for	evaluations	 Figure	5.	EMG	prediction	performance	(RMSE)	
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Figure	6.	Histogram	of	lap-based	RMSE	for	both	clean	and	dirty	data		

3.2.2. Evaluation	2	:	clean	/	dirty	classification	
The	objective	of	this	evaluation	is	to	investigate	the	performance	of	the	classification	of	whether	data	
is	dirty	or	clean.	The	dirty	data	has	151	laps	in	13	different	runs,	which	are	composed	of	3,574,847	
data	points.		As	Figure	4	shows,	one	evaluation	targets	20%	clean	test	data	and	the	second	evaluates	
20%	of	the	dirty	data.	This	process	is	repeated	five	times.	This	evaluation	accurately	judges	the	data	
quality	validation	performance.	
	
The	result	of	data	quality	validation	is	shown	in	Figure	6.	This	figure	shows	the	histogram	of	RMSE	
for	both	clean	and	dirty	classification.	Note	that	this	figure	shows	all	results	obtained	by	5	repeated	
evaluation	 at	 once.	 The	 RMSE	 of	 the	 clean	 data	 is	 relatively	 small	 because	 the	 EMG	 prediction	
performs	well	for	clean	data.	However,	RMSE	of	dirty	data	varies	widely	and	is	relatively	large	since	
the	predicted	EMG	value	deviates	from	the	actual	EMG	value.	Because	the	car	telemetry	data	is	not	
likely	to	be	affected	by	noise,	the	prediction	should	roughly	perform	within	22%	error.	Therefore,	
the	actual	EMG	value	is	considered	to	have	the	abnormality.		

If	the	classification	threshold	is	set	to	be	the	minimum	value	of	the	RMSE	of	dirty	data,	0.507	in	this	
case,	 the	 accuracy	 of	 classification	becomes	99.48%.	Realistically,	 the	 threshold	 should	be	 set	 up	
conservatively.	Although	this	causes	some	loss	from	the	clean	dataset	available	for	further	analysis,	
including	noisy	data	for	further	analytics	could	lead	to	faulty	analysis,	which	is	far	worse	than	losing	
some	valid	data.	

4. EMG	Actionable	Insight	Analytics	
One	of	 the	 common	challenges	of	wearable	devices	 is	discovering	actionable	 insights	 rather	 than	
merely	 monitoring	 vital	 data.	 In	 this	 section,	 we	 describe	 our	 methodology	 that	 identifies	 the	
potential	 points	 where	 driver	 can	 improve	 performance.	 This	 methodology	 is	 focused	 on	 using	
unsupervised	learning	on	identifying	the	EMG	correlations	with	various	data	points	from	the	car’s	
telemetry	 information	 along	 various	 GPS	 coordinates	 along	 the	 race	 track.	 We	 believe	 that	 the	
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subsequent	analytics	and	visualization	should	be	easily	manipulated	by	the	race	team	so	that	they,	
as	domain	experts,	 can	cultivate	 the	data	 themselves.	Thus,	we	have	provided	an	 interactive	data	
visualization	tool	that	has	proven	itself	valuable	in	identifying	actionable	insights.	

4.1. Methodology	–	clustering	based	analysis	
The	overall	data	processing	flow	is	described	in	Figure	7.	First,	a	signal	filter	is	applied	to	the	EMG	to	
prevent	the	unreasonable	or	spiky	noise.	Second,	𝑘-means	clustering	is	applied	to	GPS	location	to	
aggregate	the	data	from	multiple	laps	in	the	same	vicinity.	Third,	the	similarity	between	normalized	
EMG	and	car	 telemetry	data	 is	 computed	at	 each	 clustered	 location.	Finally,	 the	analysis	 result	 is	
visualized	on	an	interactive	tool.	

4.1.1. Filter	Design	
The	objective	of	the	filter	is	to	remove	unreasonable	or	spiky	noise.	As	shown	in	figure	8,	the	original	
EMG	signal	has	spiky	noise	within	0.1	seconds	with	the	interval	of	about	0.7	seconds.	This	appears	to	
be	due	 to	 the	sensor	measuring	 the	drivers	pulse	within	 the	EMG	data.	For	 this	paper,	automatic	
nervous	system	such	as	vasomotor	nerve	should	be	ignored.	Thus,	the	spiky	noise	occurring	within	
0.1	 seconds	 should	 be	 removed.	 Adjusting	 parameters,	 we	 chose	 Chebyshev	 type2	 for	 this	 case,	
because	 it	 performs	 well	 as	 shown	 in	 Figure	 8	 among	 other	 candidates. Other	 candidates	 are	
Butterworth,	Chebyshev	type1,	Elliptic,	Bessel,	FIR	(hamming	window).	Although	Elliptic	filter	seems	
to	 be	 a	 little	 bit	 better	 than	 the	 Chebyshev	 type2	 to	 reduce	 the	 amplitude,	 it	 also	 causes	 phase	
difference.	Thus,	we	chose	Chebyshev	type	2	for	this	study.		

Note	that	the	chosen	filter	may	not	be	perfect.	Choosing	better	parameters	or	using	an	adaptive	filter	
may	improve	the	performance,	however,	since	this	paper’s	 focus	 is	not	the	filter,	we	accepted	the	
performance	of	Chebyshev	type	2.	
	

	
Figure	7.	data	pre-processing	and	clustering	
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Figure	8.	filter	comparison	for	EMG	raw	data	

4.1.2. Clustering	
Including	too	many	data	points	in	time-series	data	makes	it	hard	for	users	to	intuitively	understand	
a	driver’s	behavior.	𝑘-means	clustering,	one	of	the	common	unsupervised	learning	methods,	allows	
us	to	understand	the	general	behavior	at	each	GPS	location	by	aggregating	the	locations	on	the	track.	
The	initial	centroids	for	𝑘-means	clustering	are	determined	based	on	the	complete	GPS	data	on	track	
for	one	lap.	Each	centroid	is	picked	0.5	second	intervals.	Since	the	sampling	rate	of	GPS	is	0.1	second,	
clustering	aggregates	approximately	5	data	samples	within	one	location.	

Hereby,	let	 𝑑" 3,5 	denote	the	data	point	within	0.1	second,	where	𝑙	is	the	lap	index, 𝑐	is	the	cluster	
index,	and	𝑗	is	the	data	index	in	cluster	𝑐.	Through	this	clustering	process,	the	cluster	index	𝑐	and	data	
index	𝑗	is	determined,	while	𝑙	is	given	in	raw	data.	This	 𝑑" 3,5 	owns	data	of	both	EMG	data	and	car	
telemetry	data	with	one	GPS	data	point.	

Note	 that	 this	 clustering	only	 considers	 clean	data.	The	 classification	 in	 section	3	determines	 lap	
index	𝑙	whose	data	meets	quality	levels	for	further	clustering	analysis.	If	the	data	in	lap	𝑙	is	classified	
as	not	clean,	it	is	simply	excluded.	

4.1.3. Similarity	Analysis	
Before	computing	similarity,	normalization	and	linear	 interpolation	are	needed,	as	heterogeneous	
data	points	have	different	scales	and	sampling	rates.	First,	every	data	point	is	standardized,	meaning	
the	mean	equals	0	and	the	standard	deviation	equals	1.0.	Second,	every	data	point	is	separated	with	
the	 time	 interval	of	0.1	seconds,	as	we	described	 in	4.1.2.	Third,	 linear	 interpolation	 is	applied	 to	
make	 the	dataset	 comparable,	because	 the	sampling	 rate	differs	 from	sensor	 to	 sensor.	Then,	 the	
similarity	between	EMG	and	car	telemetry	can	be	computed	as		

	
𝑠𝑖𝑚5

3 = 	
1

1 + 4	𝑒5
3 ,			𝑒5

3 =
|𝐸𝑀𝐺M

3,5 − 𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦M
3,5 |+ Q,R

M-.

𝑁 3,5 		,	 (2)	
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where	𝑠𝑖𝑚5
3 	denotes	the	similarity	between	EMG	and	car	telemetry	data	on	𝑗	th	data	point	in	cluster	

c,	𝑒5
3 		denotes	mean	absolute	error	between	EMG	and	telemetry	data	on	n	th	data	point	in	cluster	c,	

𝑁 3,5 	 denotes	 the	 number	 of	 sample	 points	 after	 linear	 interpolation,	 and	𝐸𝑀𝐺M
3,5 	 and	

	𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦M
3,5 	and	denote	the	i	th	sample	points	of	j	th	data	point	in	cluster	c.	

Based	 on	 multiple	 similarity	 scores	 in	 each	 cluster,	 the	 average	 and	 the	 standard	 deviation	 are	
computed	as	follows.	These	information	is	used	for	next	step,	data	visualization.	

	
	𝑎𝑣𝑒 3 =

𝑠𝑖𝑚5
3

5

𝑁 U ,			𝑠𝑡𝑑 3 =
1
𝑛

𝑠𝑖𝑚5
3 − 𝑎𝑣𝑒 3

*
		

5

	
(3)	

4.1.4. Data	visualization	for	data	cultivation	
It	is	important	to	provide	the	race	team	the	ability	to	cultivate	data	and	discover	actionable	feedback	
towards	performance	improvements	themselves.	We	developed	a	data	visualization	tool	with	a	web-
based	user	interface.	This	tool	offers	the	ability	to	choose	a	parameter	and	instantly	searching	for	an	
analytics	result.	Figure	9	shows	the	initial	screen.	Using	this	tool,	users	can	choose	the	parameters	of	
race,	 lap	 and	 the	 data	 analytics	 tool	 to	 be	 used.	 Once	 users	 choose	 the	 parameters,	 the	 result	 is	
displayed	as	shown	in	Figure	10.	Here,	users	can	PAN,	zoom	or	perform	other	manipulation	of	the	
data.	 The	 examples	 of	 clustering	 analytics	 results	 are	 shown	 in	 Figure	 11	 and	 Figure	 12.	 The	
meanings	of	the	shapes	and	colors	are	described	in	Figure	7.	

Figure	9.	Parameter	Selection,	Race,	Lap	and	Analytic	Tool	 Figure	10.	Demonstration	of	interactive	tools,	e.g.,	zooming	
	

Figure	11.	Example	of	EMG	visualization	 Figure	12.	Example	of	similarity	of	EMG	and	telemetry	
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4.2. Evaluation	–	Findings	from	analytics	
4.2.1. Findings	1	:	potential	improvement	points	towards	practice	focus	
By	using	EMG,	data	analytics	can	capture	the	potential	performance	improvement	points	where	the	
driver	may	use	their	muscles	more	consistently.	In	the	practice	laps	when	other	competitors	are	not	
present	on	the	track,	we	believe	the	muscle	use	should	be	consistent	at	each	cluster	within	each	lap.	
In	other	words,	the	standard	deviation,	𝑠𝑡𝑑 3 	in	eq.(3),	should	be	low.	However,	the	driver	may	not	
perform	well	against	special	characteristics	of	the	track	which	may	be	a	potential	improvement	point.	

The	 result	 of	 EMG	 cluster	 analysis	 is	 shown	 in	 Figure	 13.	 For	 this	 data,	 we	 have	 identified	 the	
potential	improvement	points	in	red	boxes.	Overall,	it	is	observed	from	this	data	that	the	driver	tends	
to	have	high	 standard	deviation	of	muscle	use	 after	 turning	 right	 at	 a	 corner.	This	discovery	 lets	
driver	identify	the	practice	focus.	In	addition	to	this,	unexpected	behavior	is	observed	in	blue	box	
area.	The	muscle	use	fluctuates	on	straight	line,	and	this	phenomenon	happens	very	stably	because	
the	 color	 is	 blue.	 This	 unexpected	 behavior	 could	 bring	 up	 another	 discussion	 on	what	 typically	
happens	at	those	specific	points	and	how	to	improve	performance	specifically	for	that	location.	

4.2.2. Findings	2	:	potential	relaxation	points	to	save	muscle	use	
Considering	the	IndyCar’s	power	steering	regulation,	identifying	potential	relaxation	points	is	very	
useful	for	the	racing	team.	It	is	expected	that	EMG	gets	higher	when	the	accelerometer	value	is	high	
because	driver	needs	to	brace	his	body.	However,	there	may	be	avoidable	muscle	forces	if	the	EMG	is	
high	when	 the	 accelerometer	 value	 is	 low.	 This	 behavior	 can	 be	 analyzed	 by	 the	methodologies	
presented	in	section	4.1.	When	there	is	less	similarity	within	a	cluster,	it	is	indicated	by	an	inverse	
triangle.	These	results	are	shown	in	Figure	14.	

For	this	data,	we	have	identified	the	potentially	avoidable	muscle	use	as	the	area	surrounded	by	red	
box.	While	the	blue	box	may	be	merely	the	muscle	use	needed	for	steering	control	around	the	corner,	
the	red	box	on	relatively	straight	line	would	be	the	potential	points	to	rest	more.	This	is	one	example	
of	the	actionable	insights	discovered	using	heterogeneous	information.	

4.2.3. Subjective	Feedback	by	professional	drivers	and	mechanics	
For	 this	project,	domain	experts	provided	 feedback	as	 subjective	evaluations.	A	professional	 race	
driver,	Tony	Kannan	in	NTT	Data	Chip	Ganassi	Racing	said	“Those	are	the	things	the	shirt	has	given	
me	more	knowledge	about,	and	I’ve	been	able	to	re-adapt.	Now	I	actually	know	how	much	strength	I	

Figure	13.EMG	clustering	analysis		 Figure	14.	Similarity	analysis	between	EMG	and	car	telemetry	
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put	into	it	and	where	I’m	doing	it.	Eventually	I	want	this	thing	to	be	able	to	tell	my	guys	when	I’m	using	
too	much	force.	Then	they	can	tell	me,	‘Hey,	stop	squeezing	the	steering	wheel	so	hard.’”		
	
5. Conclusion	
In	this	paper,	we	have	tackled	two	major	challenges:	1.	the	data	validation	of	noisy	signals	obtained	
from	a	wearable	device	in	extreme	condition,	and	2.	the	data	cultivation	to	find	actionable	insights	
for	the	driver	from	multi-modal	racing	data.		As	our	evaluations	indicated,	the	combination	of	these	
two	proposed	methodologies	have	demonstrated	the	capability	to	provide	actionable	insights	to	the	
driver	by	validating	noisy	wearable	sensor	data.	The	methodology	for	the	first	challenge	provides	
data	 quality	 assessment	 by	machine	 learning.	 This	 technique	 can	be	 applied	 to	 other	use	 case	 in	
sports	such	as	cycling	or	other	disciplines	of	auto	racing,	so	long	as	the	user	has	heterogeneous	data.	
This	 may	 include	 a	 real-time	 warning	 when	 a	 wearable	 sensor	 detaches	 from	 the	 user.	 The	
methodology	 for	 the	 second	 challenge	 provides	 a	 data	 discovery	 and	 visualization	 tool	 using	
unsupervised	learning.	One	of	the	interesting	findings	is	the	potential	relaxation	points	for	driver	to	
save	muscle	fatigue	in	their	forearms,	which	is	the	major	challenge	in	IndyCar.	The	approach	of	using	
correlation	and	visualizing	with	clustering	analytics	can	be	applied	to	other	type	of	heterogeneous	
data	analytics.	
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