不連続制御器を用いた MonoRotor 飛行ロボットの非平衡点への周期安定化 Periodic Motion Control for MonoRotor type Flying Robot at Non-equilibrium Point via Discontinuous Controller

東京工業大学 片岡 泰之 関口 和真 三平 満司 Y.Kataoka, K.Sekiguchi and M. Sampei

Abstract This paper proposes a nonlinear controller realizing periodic motion to MonoRotor type flying robot having no equilibrium point. The control target is semi-hovering; a motion that passes desired non-equilibrium point at which position and attitude stop periodically. In order to achieve this control objective, we propose discontinuous and time-varying output zeroing function which allows Zero Dynamics to be controlled, showing validity by numerical simulation.

1 はじめに

本論文では、飛行ロボットの例である MonoRotor モデ ルを制御対象に周期安定化制御問題を考える.MonoRotor モデルは劣駆動であることに加え、局所漸近可安定 性がないシステムである.そこで制御目標として、Fig.1 に示す擬似ホバリング運動を考える.ここで意味する擬 似ホバリングとは、ある周期毎に所望の高さzと所望の ヨー角 ψ で一瞬静止する周期運動」と定義する.制御戦 略として、擬似ホバリングの制御問題を二階層に切り分 ける.まず第一階層では、時変な出力零化制御によって 姿勢を制御する.次に第二階層では、Zero Dynamics で ある高さを姿勢に同期するように制御する.このとき、 第一階層の姿勢制御を維持するように出力関数を離散的 に更新することにより、Zero Dynamics を独立に制御す る不連続かつ時変な出力零化制御を提案する.

2 モデリング

Fig.2 に制御対象である MonoRotor モデルを示す.本 モデルの特性として,入力トルクの反作用が寄与するこ ととプロペラの推進力は回転の角速度の二乗に比例する ことを仮定する. 各変数と物理パラメータはそれぞれ Table1, Table2 の定義に従う.ラグランジの方法によ り導出された状態方程式から,初期時刻を $t = t_k$ とし た時の一階の非ホロノミック拘束式(1)を得る.

Fig. 1: Semi Hovering Motion

z: ロボットの重心位置 [m] $<math>\psi: ロボット本体の姿勢角 [rad]$ $\theta_p: ロボット本体から見たプロペラの相対角度 [rad]$ $<math>\tau: プロペラへの入力トルク [N·m]$

Table 2: Physica	al Parameters
<i>m</i> : ロボットの質量	: 0.10 [kg]
<i>J_r</i> :ロボットの慣性モーメ	、ント:0.150 [kg·m ²]
<i>J_p</i> :プロペラの慣性モーメ	ント: $0.050 [\text{kg·m}^2]$
k _p :プロペラの特性を表す	「係数: 0.10 [kg/m]
g:重力加速度	: $9.8 [\rm kgm^2]$

(1) を用いると, $\dot{\theta}_p$ を非線形状態方程式から除くことが できる.さらに, θ_p はダイナミクスに寄与しないので, 状態変数を $\boldsymbol{x} = [z, \psi, \dot{z}, \dot{\psi}]^T \in \mathbb{R}^3 \times \mathbb{S}$ と定義し,低次元 化された MonoRotor モデルの状態方程式 (2) を得る.

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x} = \boldsymbol{f}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})\tau, \ \boldsymbol{f}(\boldsymbol{x}), \ \boldsymbol{g}(\boldsymbol{x}) \in \mathbb{R}^{4 \times 1}$$
(2)

3 制御戦略

擬似ホバリング制御の実現に向け,次の二階層の制御 問題を考える.

- ・第一階層:姿勢角 ψ の制御
- ・第二階層: 位置 z を姿勢角 ψ に同期

本制御戦略では,第一階層の制御目標を達成しながら第 二階層の制御を達成する制御器が必要となる.

Fig. 2: MonoRotor Model

3.1 第一階層の制御:出力零化制御

 $\psi \in \mathbb{S}$ は円筒座標であり, $\dot{\psi}$ は一周期ごとに静止すれ ば良い.そこで時間区間 $k \ge k : [t_k, t_{k+1}]$ と定義し,区 間 k における姿勢角 ψ の目標軌道を $\psi_r^{\{k\}}(t)$ と定義す る. $\psi_r^{\{k\}}(t) \ge (3)$ と設定し,出力関数を (4) とする.

$$\psi_r^{\{k\}}(t) = \sin(2\pi f(t - t_k)) - 2\pi f(t - t_k)$$
(3)

$$h^{\{k\}}(\boldsymbol{x},t) = \psi(t) - \psi_r^{\{k\}}(t) \tag{4}$$

Fig.5 に目標軌道のイメージ図を示す.(4)の相対次数は2次なので出力零化入力は(5)となる.

$$u^{\{k\}}(\boldsymbol{x},t) = \frac{-(L_{f_n}^2 h^{\{k\}}(\boldsymbol{x},t) - \ddot{\psi}_r^{\{k\}}(t)) + v}{L_{g_n} L_{f_n} h^{\{k\}}(\boldsymbol{x},t)}$$
(5)

入出力線形化後のシステムは (6) となる.出力零化を達成時 ($\xi \rightarrow O^{2 \times 1}$)の状態 η を Zero Dynamics と呼ぶ.

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \dot{h}(\boldsymbol{x},t)\\ \dot{h}(\boldsymbol{x},t)\\ z\\ \dot{z} \end{bmatrix} = \begin{bmatrix} \dot{\xi}\\ \ddot{\xi}\\ \dot{\eta}\\ \ddot{\eta} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} h(\boldsymbol{\xi})\\ \dot{h}(\boldsymbol{\xi}) \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} v\\ \begin{bmatrix} \boldsymbol{q}_{z1}(\boldsymbol{\xi},\boldsymbol{\eta},t)\\ \boldsymbol{q}_{z2}(\boldsymbol{\xi},\boldsymbol{\eta},t) \end{bmatrix}$$
(6)

3.2 第二階層の制御: Zero Dynamics の制御

周期安定化の鍵となるのは,出力関数の目標軌道(3)の 設計パラメータfである.そこで, f_k を区間 $k:[t_k, t_{k+1}]$ における周波数と定義する.第二階層の制御では,時刻 t_k で f_k を更新することで出力関数を離散的に再設計す る.この際,出力関数の二階微分まで連続性が保証され るので,結果出力零化を維持したまま Zero Dynamics の挙動だけを変えることができる.

初期時刻を t_k としたときの Zero Dynamics は, η を 積分することで (7), (8) と算出される.

if
$$\dot{\psi}(t-t_k) > 2\frac{J_p}{J_r}\dot{\theta}_p(t_k) + \frac{J_r + 2J_p}{J_r}\dot{\psi}(t_k)$$

 $z(t-t_k) = a_2(t-t_k)^2 - a_1(t-t_k) + a_0$ (7)

else
$$z(t - t_k) = b_2(t - t_k)^2 - b_1(t - t_k) + b_0$$
 (8)

ここで a_i, b_i (i = 0, 1, 2)は,周波数 f_k や初期値 $z(t_k), \dot{z}(t_k), \psi(t_k), \dot{\psi}(t_k)$ に依存した定数である.Zero Dynamicsの解析結果(7),(8)より,時刻 t_k における $z(t), \dot{z}(t)$ をそれぞれ $z[k], \dot{z}[k]$ とすると,離散化されたZero Dynamicsは(9)となる.

$$\begin{bmatrix} z[k+1] \\ \dot{z}[k+1] \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{f_k} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z[k] \\ \dot{z}[k] \end{bmatrix} + \begin{bmatrix} B_{11}\frac{1}{f_k^2} + B_{12}\frac{1}{f_k} + B_{13} \\ B_{21}\frac{1}{f_k} + B_{22} + B_{23}f_k \end{bmatrix}$$
(9)

出力関数の設計パラメータ f_k を (9) に対する仮想的な 入力とみなし, (9) を周期安定とする f_k が設計できれ ば制御目標を達成できる.しかし, (9) から f_k を設計

Table 3: Simulation Parameters

$oldsymbol{q}_0$:初期状態 :	$[z(0), \psi(0), \theta_p(0), \dot{z}(0), \dot{\psi}(0), \dot{\theta}_p(0)]^T$
	$= [2.0, 2.0, 1.0, 0.5, -0.5, 2.0]^T$
\boldsymbol{q}_{rk} :目標状態: $[z(t_k), \psi(t_k), \theta_p(t_k), \dot{z}(t_k), \dot{\psi}(t_k), \dot{\theta}_p(t_k)]^T$	
=	$= [0.0, 0 \pmod{2\pi}, *, 0.0, 0.0, *]^T$

することは難しい.よってここでは $\psi = 0, \dot{\psi} = 0$ となるポアンカレ断面から仮想入力 f_k を設計する.Zero Dynamics の解析結果 (7) と (8) より, ψ の一周期後の時刻 $t_{k+1} = t_k + \frac{1}{f_k}$ において $z(t_{k+1}) = 0$ となる周波数 $f_{dz}^{\{k\}}$ がそれぞれ算出される.これらを用いて周波数の更新則を (10)とする.

$$f^{\{k\}} = f_z^{\{k\}} a + f_{dz}^{\{k\}} (1-a)$$

$$a = \cos\left(\tan^{-1}\left(\frac{|\dot{z}(t_k)|}{|z(t_k)|}\right)\right)$$
(10)

4 数値シミュレーション

数値シミュレーションに用いた値を Table2, Table3に 示す.出力零化を達成し,さらに Zero Dynamics を制 御することで制御目標を達成していることが分かる.

5 おわりに

本論文では, Zero Dynamics を陽に考慮した時変な出 力関数を不連続に更新する制御器を提案し, MonoRotor モデルに対して擬似ホバリングを実現した.