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Abstract— In this paper, a nonlinear controller is designed
for an underactuated UAV having three inputs to realize “circle
motion”, the motion that the attitude of UAV points to the
center of circle while the center of mass moves on a circle
orbit. The proposed method is redesigning the time-varying
output zeroing controller discretely. This method allows output
functions to be kept zero even though output functions are
changed. In other words, zero dynamics can be controlled by
this method. Finally, numerical simulation shows the validity
of the proposed nonlinear controller.

I. INTRODUCTION

UAV is high-potentialed application that opens up new
innovating applications in various fields. The notable prop-
erty that UAV usually owns is structual underactuation. For
example, Quadrotor UAV system[3] has four inputs whereas
the degree of freedom is six. One of the challenges of UAV
is to find out what motion can be realized via less inputs.
Finding answers would suggest restriction of mechanical
design and control objective of fail-safe. In this paper, a
strongly underactuated UAV system which has only three-
inputs is considered. Specifically, Trirotor UAV having only
three inputs[1] is considered as an example of controlled
object. The main contribution of this paper is to suggest
a new nonlinear controller realizing “circle motion” which
requires both three dimensional position control and one
dimensional attitude control by three inputs. The control
method this paper would be useful for fail-safe control
strategy in real applications, which is highly required from
the perspective of practical usage.

In previous research[1], some characteristics of the sug-
gested Trirotor UAV were revealed. This Trirotor UAV does
not have equilibrium point without a condition of model
parameter. In addition, this model does not have locally
asymptotically stabilizability even though the model satisfies
the condition. This result proves the fact that it is impossible
to control hovering motion by three inputs via continuous
time-invariant state feedback. Reflecting this result, the con-
trol objective is set as one of the periodic motions, “circle
motion” which is shown in Fig.1. In this paper, “circle
motion” is defined as the motion that the center of mass
moves on an arbitrary circle orbit while the attitude of UAV
points to the center of the orbit. For practical usage, this
circle motion allows a camera-mounted UAV to take photo
or video for a target in the center of the circle orbit.
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Fig. 1. Image of Circle Motion Control

In this paper, the nonlinear equation for the Trirotor
UAV is briefly derived in section II. Note that the propose
Trirotor model owns literally only three inputs, which means
this does not own any other input such as servo motors
as other Trirotor models have.[4][5] Next, system analysis
discusses some characteristics of underactuated Trirotor UAV
in section III. The results, especially Strongly Accesibility,
lead control objective to periodic motion. Then, the control
design, the main contribution of this paper, is addressed in
section IV. The design method of the discrete output zeroing
control for the Trirotor model is mentioned. Numerical sim-
ulation confirms the effectiveness of the proposed nonlinear
controller. Finally, conclusion and future work are given in
section V.

II. MODELING

This section briefly introduces a dynamic model of Triro-
tor UAV shown in Fig.2 and Fig.3. One of the main features
of this model is the three rotors which are installed on three
skew axes. One note here is that this model does not own
other inputs such as a servo motor to control tilting angle.
Here, the behavior of this model is briefly described. As
is shown in bold red letters in Fig.2, the rotation of rotor
1 generates the translational force in positive y direction.
Plus, this rotation generates two different moments, positive
rotation about the axis of y and negative rotation about the
axis of z. Consequently, two moments on each axis cancel
each other to suppress the attitude variation.

A. Assumption against Trirotor UAV

The model assumptions are given in this section. The
details about this model can be found in [1]. In this paper,
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Fig. 2. Overview of UAV Model having Three Rotors

significant assumptions and definitions are briefly introduced.
1) Input to Trirotor UAV

The system inputs to this system are assumed to
be torque inputs driven by DC motors which are
connected to three rotors.

2) Counteraction against Input Torque
The counteraction against input torque can not be
neglected for this system, since the inertia of this
vehicle is assumed to be relatively small to the input
torque. The moments vector generated by three inputs
result in

N r =

NF2−Nτ3

NF3−Nτ1

NF1−Nτ2

 =

(r2 × Fr2)−u3

(r3 × Fr3)−u1

(r1 × Fr1)−u2

 (1)

.

TABLE I
PHYSICAL VARIABLES

Σo : inertial coordinate system
Σr : relative coordinate system
ξ : position of the center of gravity of robot (x, y, z)
η : posture angle : Euler angle (φ, θ, ψ)
ω0 : angular velocity vector defined on Σ0

ωr : angular velocity vector defined on Σr

θ̇pi : angular velocity of ith rotor(propeller)
θ̇p : vector of θ̇pi, [θ̇p1, θ̇p2, θ̇p3]T

Fri : force to direction i on Σr

F r : force vector on Σr , [Frx, Fry , Frz ]T

NFi
: moment of force generated by Fi

Nτi : counteraction generated by the rotation of rotor i
Nr : total moment vector on Σr

u : torque input to each motors [u3, u1, u2]T

Fig. 3. Trirotor UAV Model from Different Angle

3) Propulsion Force generated by Rotors
Each translational force generated by the three rotors
is proportional to square of the angular velocity of the
rotors,

F r =

kp3sgn(θ̇p3)θ̇2
p3

kp1sgn(θ̇p1)θ̇2
p1

kp2sgn(θ̇p2)θ̇2
p2

 (2)

where kpi denotes the constant parameter representing
the property of rotor i.

4) Air Friction caused by Body Rotation
It is also assumed that the air friction caused by body
rotation generates viscous term to attitude dynamics.
This viscous term physically means the rotation veloc-
ity converges, if there remains constant moment to the
system.

B. Nonlinear Equation

First, let qe denote the state of the Trirotor model,

qe =: [ξT , ξ̇
T
, ηT , η̇T , θ̇

T

p ]T ∈ R12 × S3 (3)

where each variable is defined in Table I. Note that θp can be
neglected from system realization because it does not affect
system dynamics.

Next, let the coordinate transformation matrices be defined
as

ωr = RT (η)ω0 (4)

R(η) =

[
CψCθ −CφSψ + CψSφSθ SφSψ + CφCψSθ

CθSψ CφCψ + SφSψSθ −CψSφ + CφSψSθ

−Sθ CθSφ CφCθ

]
(5)

ωr = T (φ, θ)η̇ (6)

T (φ, θ)=

[
1 0 −Sθ

0 Cφ SφCθ

0 −Sφ CφCθ

]
(7)

TABLE II
PHYSICAL PARAMETERS

m : mass of the suggested model
Jr : inertia tensor defined on Σr(constant)
Dr : viscous matrix by air friction defined on Σr

Jp : diag{Jp3, Jp1, Jp2}, Jpi : rotary inertia of ith rotor
Dp : diag{Dp3, Dp1, Dp2}, Dpi : coefficient of viscosity
kpi : coefficient of property of ith rotor
ri : vector from COG to operating point of Fi on Σr

g : gravitational acceleration



where S∗ = sin ∗ and C∗ = cos ∗ are used for simplifica-
tion. The dynamics of Trirotor system can be derived via
Lagrange-Euler method

Mξ̈ = −Cξ + R(η)F r (8)

Jrη̈ = −Cη(φ, θ, η̇) + T T (φ, θ)N r (9)

Jpθ̈p = −Cθp(φ, θ, η̇) + u (10)

where Cξ is constant matrix and Cη(φ, θ, η̇), Cθp(φ, θ, η̇)
are matrices composed of nonlinear elements. Consequently,
the 15 dimensional nonlinear state equation is obtained in
state space form by defining

q̇e =: fe(qe) + ge(qe)u (11)

where fe(qe) ∈ R15×1, ge(qe) ∈ R15×3. The detail of
modeling process is in [1].

III. SYSTEM ANALYSIS

In this section, the property of Trirotor model is analyzed
to reveal the limitation of control objective. In previous
research[1], the significant result regarding Locally Asymp-
totically Stabilizability was revealed. Here, Strongly Acces-
sibility is additionally discussed to indicate the feasibility of
periodic motion.

A. Equilibrium point

It is verified that there does not exist equilibrium point
in Trirotor model (11) unless the model satisfies the specific
conditions of model parameters which are discussed in [1].

B. Locally Asymptotically Stabilizability (LAS)

The notion of LAS[2] for UAV system is equivalent to
whether hovering control is mathematically possible or not.
The result was gained that it is impossible to locally asymp-
totically stabilize a generic UAV model by time-invariant
continous state feedback control using three inputs even if
the system has equilibrium point. This result indicates that
hovering control can not be the control objective for three-
inputs system.

C. Strongly Accessibility

Let ge = [g1e, g2e, g3e] denote control input vec-
tor field. Plus, let Csa(qe0) denote Strongly Accessibility
Distribution[7]. Strongly Accessibility Distribution for this
system (11) is equivalent to the involutive closure Ḡsa, where
Gsa is defined as span{ge, [fe, gie], [fe, [fe, gie]], · · · } (i =
1, 2, 3) and x0 is an arbitrary state. Thus, (12) is the
condition for system (11) to own Strongly Accessibility at
a point qe0.

rank (Csa(qe0)) = rank
(
Ḡsa(qe0)

)
= 15 (12)

In this section, Strongly Accessibility distribution at several
states qej (j = 1, 2) are numerically computed because
the analytical computation of Strongly Accessibility for the
Trirotor UAV model (11) is difficult due to the complexity
of system model.

Fig. 4. Image of Control Strategy

• qe1 = [O1×3,O1×3, π
4 , tan−1

(
1√
2

)
, 0, O1×3,11×3]T

This is the condition that the posture of Trirotor UAV
is upward such as in Fig.2 and every propellor has
velocity. Strongly Accessible Distribution at point qe1

results in
rank (Csa(qe1)) = 15 (13)

. Therefore, the system (11) can be shown to be Strongly
Accessible at qe1.

• qe2 = [O1×3, O1×3, π
4 , tan−1

(
1√
2

)
, 0, O1×3, O1×3]T

This is the almost same condition as above but the ve-
locities of every propellors are zero.Strongly Accessible
Distribution at point qe2 results in

rank
(
Ḡsa2

)
= 12 (14)

where Gsa2 = span{ge, ad1
fgie, ad2

fgie, ad3
fgie} and

i = 1, 2, 3. The numerical computation of Lie bracket in
the higher order is not possible due to the complexity.
This result infers that there exist singular points that
should be avoided in the design of desired trajectory.

Through the analysis of LAS and Strongly Accessibility,
periodic motions need to be affirmatively considered as a
control objective rather than hovering control for Trirotor
model (11).

IV. CONTROLLER DESIGN

The control objective of circle motion is defined as motion
that the center of mass moves on a circle orbit while the
attitude of UAV points to the center of circle. The image of
this motion is given in Fig.1. This control objective requires
the 3 dimensional position control and 1 dimensional attitude
control via 3 inputs, which means controlling zero dynamics
is demanded. In this section, we propose a nonlinear control
method that enables zero dynamics to be controlled.

A. Formulization of Circle Motion Control

The control strategy can be divided into next two steps.
1st step : position control of UAV on a circular orbit
2nd step : posture control of UAV pointing the center
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Fig. 5. definition of Ψ and Θ

The image of this step-based control strategy is shown
in Fig.4. In the 1st step, the position of COG is controlled
via output zeroing in order to let UAV move on an arbitrary
circle orbit. Then, in the 2nd step, the posture is controlled so
that a desired surface of UAV faces to the center of the circle
orbit. The significantly important point of control design in
2nd step is to keep output functions zero in order to control
zero dynamics explicitly.

Here, let “rotation angle” and “revolution angle” be intro-
duced for the formulization of the control objective in each
steps explicitly. The image of both angle is shown in Fig.5.

Let Ψ denote “rotation angle”, the rotation angle about the
axis of z on Σ0. The velocity associated with Ψ corresponds
to the element z of ω0 defined in Table I. The representation
of Ψ and Ψ̇ by euler angle η result in

Ψ = ψ (15)

Ψ̇ = − sin(θ)φ̇ + ψ̇ (16)

. Note (16) is obtained by from (5) and (7).
Next, let Θ denote “revolution angle”, the rotation angle

of the circle orbit on xy-plane. Θ and Θ̇ are determined with
position x, y and velocity ẋ, ẏ by

Θ = tan−1

(
y − yr

x − xr

)
(17)

Θ̇ =
(x − xr)ẏ + (y − yr)ẋ
(x − xr)2 + (y − yr)2

(18)

where (xr, yr) is the desired center of the target circular
orbit. Then, the goal of 1st step is formulized as

x → xr + r cos(Θd(t)) (19)
y → yr + r sin(Θd(t)) (20)
z → zr (21)

where Θd(t) is the time-variant function representing the
target trajectory of revolution angle Θ and zr is the desired
height.

Next, the goal of 2nd step is interpreted as the corre-
spendence of rotation angle Θ and revolution angle Ψ. Let
e and ė denote the error of these angles. Then, the goal of

2nd step is formulized by (22) and (23).

e = Ψ − Θ → 0 (22)

ė = Ψ̇ − Θ̇ → 0 (23)

B. Control Design in 1st step

The goal of 1st step is achieved via output zeroing control.
The details of the design procedure of output zeroing in
MIMO case can be found in [6]. The output functions to
realize the goal of 1st step are designed as

h =

h1 − hr1(t)
h2 − hr2(t)
h3 − hr3

 =

x − (xr + r cos(Θd(t))
y − (yr + r sin(Θd(t))

z − zr

 (24)

where Θd(t) is a linear function of time t. Since all of the
relative degree for each of output functions in (24) is 3, the
original system can be partially linearized via input-output
linearization as 9 dimensional linear subspace. Then, there
remains the rest of unobservable 6 dimensional nonlinear
subspace. The control input for input-output linearization is
designed by

u = −α−1(qe) (β(qe) − v) (25)

α(qe) =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , β(qe) =

b1

b2

b3

 (26)

aij = Lgej
L2

fe
hi(qe) (27)

bi = L3
fe

hi(qe) −
∂3

∂t3
hri(t) (28)

. The obtained linear subsystem results in

σ̇ = Aσ + Bv ∈ R9×1 (29)

A =

2

4

A3 O3×3 O3×3

O3×3 A3 O3×3

O3×3 O3×3 A3

3

5 , A3 =

2

4

0 1 0
0 0 1
0 0 0

3

5 (30)

B =

2

4

B3 O3×1 O3×1

O3×1 B3 O3×1

O3×1 O3×1 B3

3

5, B3 =

2

4

0
0
1

3

5 (31)

σ =

2

4

σ1

σ2

σ3

3

5 , σi =

2

4

hi − hri(t)
Lfehi(qe) − ∂

∂t
hri(t)

L2
fe

hi(qe) − ∂2

∂t2
hri(t)

3

5 (32)

by input-output linearization (25). The linear systems (29) is
easily controlled by designing v ∈ R3×1 using linear control
theory unless states (3) are desgined to pass the point at
which the system (11) does not own Strongly Accesibility.

The rest of unobservable nonlinear subsystem by input-
output linearization (25) results in

ζ̇ = Γ(σ, ζ, t) ∈ R6×1 (33)

ζ =
[
ηT , η̇T

]T
(34)

where ζ is chosen so that the coordinate transformation of
input-output transformation satisfies diffeomorphism.

The nonlinear subsystem (33) is called Zero Dynamics,
when output zeroing is realized. In this case, zero dynamics
is represented by

ζ̇ = Γ(O9×1, ζ, t) (35)



. In the second step, it is required to control zero dynamics
so that (22) and (23) are satisfied.

C. Control Design in 2nd step

Before the controller design, let some parameter be defined
regarding discretization. Let sampling interval denote k :
[tk, tk+1]. In addition, let the desired trajectory function of
revolution angle at interval k denote Θ{k}

d (t). Moreover, let
Θ̇{k}

d (tk+1) = d
dtΘ

{k}
d (tk+1) denote the desired velocity of

revolution angle at t = tk+1 in interval k. This parameter
will be a design parameter for a discrete controller. In the
2nd step, the controller (25) becomes discrete output zeroing
controller by using these parameters.

The main idea of the control strategy in 2nd step is to
modify Θd(t) in (24) discretely. The challenges of this
control are mainly next two points:

(a) preservation of output zeroing against discretization,
(b) design of discontinuous controller.
First, let challenge (a) be argued. In order to preserve

the achivement of 1st step, it is necessary to maintain the
continuity of output functions and the derivatives of them
until the third time derivative, because the relative degrees of
output functions are all 3. Otherwise, there occurs deviation
from the desired circular motion which is achieved in the
1st step. Plus, the first time derivative of desired trajectory,
Θ̇{k}

d (t), should monotonically increase or decrease at inter-
val k. Overall, these conditions require Θ{k}

d (t) to satisfy the
following 7 equations.

I Θ{k}
d (tk) = Θ(tk)

II Θ̇{k}
d (tk) = Θ̇(tk)

III Θ̈{k}
d (tk) = 0

IV
...
Θ

{k}
d (tk) = 0

V Θ̈{k}
d (tk+1) = 0

VI
...
Θ

{k}
d (tk+1) = 0

VII
∫ tk+1

2
tk

Θ̈{k}
d (t)dt = Θ̇

{k}
d (tk)+Θ̇

{k}
d (tk+1)

2

The conditions of I ∼ IV are initial conditions, and
V and VI are the conditions for assurance of continuity.
The condition VII is the one for Θ̇{k}

d (t) to reach desired
Θ̇{k}

d (tk+1) at time t = tk+1 monotonically. Note that it is
unnecessary to control Θ{k}

d (tk+1), the revolution angle at
t = tk+1, in 2nd step.

Hereby, Θ{k}
d (t), the desired trajectory function of rev-

olution angle at interval k, can be found as sixth-order
polynomial denoted by

Θ{k}
d (t) =

6∑
l=0

plt
l (36)

where, pl(l = 0, 1, · · · , 6) are constant parameters composed
of initial conditions, time interval parameter tk, tk+1 and
design parameter Θ̇{k}

d (tk+1). The images of target trajectory
(36) and time derivative of them are shown in Fig.6. Remark

Fig. 6. Property of Target Time Trajectory Θt(t, tf , Θ̇t(tf ))

that maintaining the achievement of 1st step is always real-
ized by updating Θ{k}

d (t) designed in (36) at each interval
k.

Next, let challenge (b) be discussed. Since tk+1 and
Θ̇{k}

d (tk+1) can be arbitrarily chosen, these design parameter
can be interpreted as the input to zero dynamics. Hence, let
Θ̇{k}

d (tk+1), the one of the virtual inputs to zero dynamics,
denote uv . The virtual input uv can be the input to the
discreted zero dynamics at interval k. This is expressed by

ζ̇[k + 1] = Γ(O9×1, ζ[k], uv) (37)

. Note that (37) is the discreted system of (34).
If the discrete dynamical system (37) is analytically de-

rived, the controlller can be analytically designed. However,
in this case of 15 dimensional UAV model, the zero dynamics
is too complicated to find the analytical solution. Therefore,
the design of virtual input uv is designed to be PID control
against the error e as is shown in

uv = Ψ̇(tk) + Kpe + Ki

∫ tk

t0

e dt (38)

. Note that this would not analytically guarantee the stability.

D. Numerical Simulation

In this numerical simulation, it is assumed that all of
states can be measured by sensors. The model paramters
used in this simulation are given in Table III and Table IV.
In addition, symmetric property is assumed against Jr,Dr

and properties of propellors. In order to show the effect
of the proposed controller, the 1st step is only focused at
0 ≤ t < 5. Here, the feedback input v in (25) is designed by
LQ regulator. Then, the 2nd step is considered at t ≥ 5. The

TABLE III
MODEL PARAMETER

m : mass of robot : 0.30 [kg]
|ri| : distance between COG and rotor : 0.15 [m]
g : gravitational acceleration : 9.8 [kgm2]



Fig. 7. Sequence of the Circle Motion Control with ψ = Θ

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30

h[
m

], 
dh

[m
/s

], 
dd

h[
m

/s
^2

]

time[s]

The Response of Output Functions

h1
dh1

ddh1
h2

dh2
ddh2

h3
dh3

ddh3

Fig. 8. time response of h

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30

ps
i -

 T
he

ta

time[s]

The Response of error e

error

Fig. 9. error e = Ψ − Θ

-2

-1

 0

 1

 2

 0  5  10  15  20  25  30

dp
si

 -
 d

T
he

ta
[r

ad
/s

]

time[s]

The Response of derror de/dt

derror
dpsi

dTheta
designed Theta(tf)

Fig. 10. ė and Θ̇
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design parameter for the controller is also shown in Table
IV. Remark that Kp and Ki is designed conservatively.

First, the sequence of movie of this numerical simulation
is shown in Fig.7. This figure briefly confirms that certain
point of UAV which is indicated by black arrow in Fig.7
faces to the center of a circular orbit while COG moves on
circular orbit.

Second, the result of 1st step is shown in Fig.8. The linear
subsystem is stabilized within 5 seconds. This confirms that
the orbit of UAV is constrained on the circular orbit, meaning
that the goal of 1st step is achieved.

Third, other graphs confirms the validity of the proposed
discrete output zeroing control in 2nd step. Fig.9 shows the
correspondance of rotation angle Ψ and revolution angle Θ,
meaning the goal of 2nd step is achieved as well. This result
shows that a certain state of zero dynamics is explicitly
controlled by the suggested discrete output zeroing control,
because time responses of output functions are kept to
be zero at t ≥ 5. Moreover, the performance of discrete
controller is also shown in Fig.10 and Fig.11. The desired
velocity of revolution angle Θ̇{k+1}

d (t) is smoothly updated.
Finally, Poincaré map of e − ė plane at each interval k
is shown in Fig.15. The stability of the controller (38) is
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numerically confirmed.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we propoesed the controller design to realize
circle motion with the attitude control via discrete output
zeroing control for UAV having three inputs. The control
strategy is based on two steps. As a first step, COG of
UAV is focally controlled on a circular orbit. As a second
step, the dicsecre output functions are designed to keep
continuity in the boundary in order to maintain achievement
of the control objective in first step. Finally, the numerical
simulation verified the validity of the proposed controller. As

TABLE IV
CONTROLLER PARAMETERS

(xr, yr) : desired center of a circular orbit : (0, 0) [m]
zr : desired height : 0 [m]
r : radius of a circular orbit : 0.5 [m]
Q : Q matrix of LQ gain : diag{11×6, 100.0, 1.0, 1.0}
R : R matrix of LQ gain : I3×3

tk+1 − tk : time interval of update : 1.0 [s]
Kp : proportional gain in (38) : 0.01
Ki : integral gain in (38) : 0.001



a conlusion, circle motion can be obtained by three inputs
even though hovering control can not be realized.

Proof of stability of the rest of zero dynamics, e.g.φ and
θ shown in Fig.13, remains as a future work.
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